
Semantic Versioning
Everything should have a meaningful version number.

FOR TEAMS, MANAGERS OR LEADERS

The larger the dependencies the more 
important it is to know if changes have 
been made to an items and if these 
changes will need changes elsewhere.

Even though versioning is absolutely 
indispensable in the IT and technical world 
it has not made its way into most of the 
commercial world, e.g. into versioning 
presentations, papers, texts, organizations, 
processes, concepts, ideas, products, etc. 
Semantic versioning would also add value 
here, especially if the context is also 
complex, fast-changing or agile.

Semantic Versioning represents a way of 
thinking. The current version is the best at 
the moment but will certainly be improved.

concept cards©

After MAJOR.MINOR.PATCH further 
information can be added in dot-notation, 
e.g. statuses, initials, languages, 
extension: v2.4.1.beta.ua.en.pdf

How

In semantic versioning, version numbers 
obey to the following structure:

MAJOR.MINOR.PATCH

MAJOR counts upwards for significant or 
structural changes and for major feature or 
functional enhancements.

MINOR counts upward for minor feature or 
functional enhancements or less significant 
content changes. (For software, minor 
changes are backward compatible).

PATCH counts upwards for corrections or 
bug fixes. No features or functionalities are 
added and content is not changed.

According to this logic, users of the 
versioned thing can immediately see that it 
has been changed and how significant the 
change was. As a result, they can further 
review the changes to evaluate their impact 
and consequences.

Add-ons

Why

© Prof. Dr. Ulrich Anders · concepts cards© license CC BY-NC-ND 4.0 v1.1.0


	Slide Number 1

